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Abstract—Advances in deep neural networks (DNNs) have
shown tremendous promise in the medical domain. However,
the deep learning tools that are helping the domain, can
also be used against it. Given the prevalence of fraud in the
healthcare domain, it is important to consider the adversarial
use of DNNs in manipulating sensitive data that is crucial to
patient healthcare. In this work, we present the design and
implementation of a DNN-based image translation attack
on biomedical imagery. More specifically, we propose Jekyll,
a neural style transfer framework that takes as input a
biomedical image of a patient and translates it to a new
image that indicates an attacker-chosen disease condition.
The potential for fraudulent claims based on such generated
‘fake’ medical images is significant, and we demonstrate
successful attacks on both X-rays and retinal fundus image
modalities. We show that these attacks manage to mis-
lead both medical professionals and algorithmic detection
schemes. Lastly, we also investigate defensive measures based
on machine learning to detect images generated by Jekyll.

1. Introduction

As we make rapid advances in deep learning/AI, it is
important to understand the associated security implica-
tions. Attackers can no longer be assumed to have limited
algorithmic intelligence [1]. An emerging threat is that
of “deepfakes”, or AI generated synthetic content that
appears convincingly real [2]. Deepfakes are enabled by
deep generative models such as Generative Adversarial
Neural Networks (GANs) [3]. Generative models can pro-
duce photorealistic fake images [4], [5], and convincing
fake videos [6]. Recently, the threat of deepfakes has been
largely discussed in the context of the Web, where they
can be used to create fake accounts, fake pornographic
images of celebrities, images of people doing things they
never did to spread misinformation, and manipulate elec-
tions [7]. In this work, we investigate threats posed by
deepfakes in the healthcare domain, i.e. how bad actors
can make use of generative schemes to attack critical
workflows in our healthcare framework.

Healthcare spending is huge in many developed coun-
tries, and the system is already fraught with fraud [8]–[13].
Prior work has highlighted exploitable vulnerabilities in
the healthcare domain. The industry has employed poor
security practices in securing sensitive patient data such
as biomedical images [14]–[16]. In 2019, Mirsky et al.
demonstrated attacks that compromise biomedical data
management pipelines [16]. As our healthcare system is
susceptible to bad actors, it is important to investigate new
threat vectors driven by technological advances.

We propose an attack framework called Jekyll that
leverages generative deep learning to derail one of
the most important decision processes in the medical
domain—medical diagnosis based on biomedical image
analysis. Jekyll is based on a Generative Adversarial Neu-
ral Network (GAN). Our key insight is to use an image-to-
image style transfer approach for our attack. Jekyll takes
as input a biomedical image of a victim, and translates it
to produce a new (fake) image that changes the “style” by
injecting an attacker-chosen disease into the image, while
preserving the “content” or identity of the victim. The
targeted condition does not reflect the real health condition
of the patient. Therefore, the key outcome is to produce a
“deepfake” image that can cause both a human (medical
professional), and an algorithm to misdiagnose the health
condition [17]–[19]. This is because the produced image
shows human-perceptible signs of the targeted condition,
which is also sufficient to mislead automated algorithmic
schemes.

An incorrect diagnosis can lead to potential life-
threatening situations for the patient, unnecessary health-
care costs, and wasted healthcare resources. The attacker
may be motivated by financial gain. For example, a
malicious clinic can trigger misdiagnosis and force an
insurance provider to pay for unnecessary procedures. The
attacker may also be motivated by criminal intent to cause
harm to an individual (or group of individuals), or to dis-
rupt and damage a particular healthcare framework [16],
[20].

A key aspect of Jekyll is the capability to perform
controlled creation of the fake image. Apart from being
able to inject an attacker chosen disease condition, it can
be done while preserving the “identity” of the patient. This
is important because biomedical images are known to con-
tain patterns that are unique to their patients. Preserving
identity makes the attack much harder to detect because
the image will appear to belong to the victim and will not
seem abnormal. To make the attack more damaging, our
tool can also be used during repeat visits by the victim to
inject disease patterns that mimic the natural progression
of the disease.

Attacks using Jekyll are realized by training on pub-
licly available medical image datasets. Our attack only
requires datasets annotated with health conditions and
(anonymized) patient IDs. More importantly, Jekyll only
requires a single image of the victim to generate a mis-
leading fake image.

Key contributions of our work include the following:
(1) We design and implement a GAN-based tool called
Jekyll that can inject an attacker chosen disease condition
into a victim’s image, while preserving their identity.
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(2) We demonstrate the feasibility of the attack on two
popular biomedical image modalities—X-rays and retinal
fundus images. Using publicly available medical datasets,
Jekyll is used to inject Cardiomegaly, and Pleural Effusion
health conditions into chest X-rays of healthy patients. For
retinal images, we demonstrate injection of the Diabetic
Retinopathy condition.
(3) We show that attacks powered by Jekyll can be sus-
tained over time. As patients make repeat visits to a
hospital, Jekyll can be used to inject disease conditions
that match the expected progression of a disease.
(4) The effectiveness of attacks by Jekyll is evaluated by
both (a) machine learning algorithms and image quality
metrics, and (b) medical professionals. Our user study
shows that medical professionals are convinced of the
presence of targeted disease conditions in the fake images,
and that they are unable to distinguish between real and
fake images.
(5) Finally, we explore defensive schemes. We investi-
gate two machine learning-based detection schemes: (1)
Blind detection: assumes no access to fake images, and
no knowledge of attacker’s model for training, and (2)
Supervised detection: assumes access to both real and fake
images for training. We show that supervised detection
schemes are highly effective, but also vulnerable to eva-
sion schemes that modify Jekyll to bypass detection.

2. Background and Related Work

Problem motivation. Healthcare spending is huge in
many developed countries. In 2017, the US spent 17%
of its GDP on healthcare [21]. Not surprisingly, given
the money involved, the healthcare system is already
fraught with fraud [8]–[13]. Different entities/actors in
the system—medical institutions (large hospitals as well
as small clinics), medical practitioners (e.g., physicians,
radiologists), health insurers, all have an incentive to
engage in fraud and benefit financially [8]. For example,
a clinic can bill patients for unnecessary procedures or
medication [22]. On one hand, hospitals are known to
inflate the cost of medical care to overcharge patients,
while on the other, insurers have an incentive to reduce
payout [23], [24]. The attacker may also be motivated
by a criminal intent to cause harm to an individual (or
group of individuals), or to disrupt and damage a particular
healthcare framework [20]. Overall, security practices im-
plemented in healthcare systems are lacking, making them
vulnerable to attacks that compromise the availability and
integrity of medical data [14], [15]. These trends motivate
us to explore potential threats by malicious actors that
leverage technological advances in machine learning to
engage in hard-to-detect medical fraud.

Biomedical images. Medical imaging is a crucial com-
ponent of any health care framework. Biomedical im-
ages taken using specialized instruments capture interior
anatomical structures of a human body. By analyzing
these images, medical practitioners can monitor diseases
and prepare treatment plans, often without requiring any
invasive procedures [25]. To demonstrate our attack, we
focus on two widely used image modalities, X-rays, and
retinal fundus images. X-ray images are widely used to
assess a range of injuries (e.g., damaged bones), and
health conditions such as heart disease, breast cancer, and

collapsed lungs. Fundus photography helps to capture an
image of the back of the eye. Fundus photographs of the
retina [26] are used by ophthalmologists to detect Diabetic
Retinopathy, a condition that could lead to vision loss in
patients with diabetic mellitus [26].

Attacks proposed in this work, while demonstrated
on X-ray and retinal fundus imagery, are theoretically
applicable to other 2D image modalities, e.g., Ultrasound,
and 2D MRI scans [25]. In Section 3.1, we also explain
potential application to 3D modalities. Also, unlike other
images, biomedical images are usually highly standardized
in terms of anatomical position and exposure [27]. This
makes it easier to learn patterns in anatomical structures
and makes them more vulnerable to attacks discussed in
this work.

Adoption of ML for healthcare decisions. Given the
availability of large medical image datasets, and advances
in deep learning, it is expected that algorithms will play a
significant role in aiding healthcare decisions [26]. Deep
learning schemes that analyze medical images can help
doctors spot health conditions that may be otherwise hard
to identify even by a trained professional [17]. Insurance
providers may also leverage algorithms to automate veri-
fication of diagnoses, before making reimbursements [8].
Recently, the community has seen rapid advances in al-
gorithmic decision making for medical imaging tasks that
even surpass human performance. Recently, the U.S. Food
and Drug Administration approved an AI algorithm to
screen chest X-rays for collapsed lung (or Pneumoth-
orax) [28]. In fact, AI-based systems are already be-
ing tested/deployed to assess diabetic blindness [29], de-
tect chromosomal abnormalities [30], and pancreatic can-
cer [31]. Recent examples also include ML schemes that
perform well on breast cancer detection [32], skin cancer
classification [33], arrhythmia detection [34], hemorrhage
identification [35], and diabetic retinopathy detection [36].

Hence, a successful attack that aims to mislead any
medical decision process, should also fool an ML scheme
designed for the same decision process. Otherwise, even if
it can mislead a medical professional, it could be thwarted
by an ML scheme.

Jekyll vs attacks using adversarial samples. Given
an input image, one can add carefully crafted adversarial
perturbations that are imperceptible to humans, such that
the perturbed input triggers misclassification when fed to a
model [37]. Therefore, one approach to mislead ML-based
diagnostics tools is to craft adversarial samples of biomed-
ical images—given a chest X-ray of a healthy patient, craft
an adversarial input that fools the ML model to predict a
disease condition [8]. However, today, medical images still
undergo visual examination by professionals—radiologists
can identify that an adversarial X-ray image (targeting a
disease condition) still looks healthy, thus rendering the
attack ineffective. Hence, we propose attacks that produce
images containing visually perceptible changes that can
mislead both a human (more importantly, a medical pro-
fessional) and an ML model.
Prior work on misuse of ML/AI. Most prior work
at the intersection of ML and security primarily focused
on attacks against ML systems [38]. But, recently, there is
emerging interest in understanding new attacks enabled by
ML/AI [1]. In the non-medical space, research has demon-
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strated AI techniques to break CAPTCHA systems [39],
generate convincing fake reviews [40]–[42] and email con-
tent [43], control voice assistants (e.g., Google Assistant,
Alexa) [44], [45], extract private information from collab-
orative learning systems [46], attack anonymity systems
(Tor) [47], [48], and to automate DoS attacks via trace
synthesis [49].

In the medical domain, there is limited work on un-
derstanding threats posed by AI. Kohli et al. proposed an
Iris presentation attack using a DCGAN [50]. Their attack
specifically focused on Iris biometric systems and is not
generally applicable. In more closely related concurrent
work from 2019, Mirsky et al. proposed CT-GAN [16],
a framework that uses deep learning to tamper with 3D
medical imagery (CT images) to add or remove signs of
medical conditions. Compared to both these works, we
propose a generic attack that is applicable to multiple
diseases, multiple modalities (X-ray, retinal fundus), and
requires significantly less effort from the attacker to suc-
cessfully mislead diagnostic processes. We discuss CT-
GAN in more detail in Section 3.1.

3. Attacking Medical Diagnostics

3.1. Threat Model and Overview of Approach

Threat Model. The victim, a patient, visits a medical
imaging lab, and obtains a biomedical image of some
type, e.g., X-ray, retinal Fundus. Unknown to the victim,
the attacker obtains access to the victim’s image, and
“translates” it to a version with an attacker-chosen disease
condition (that does not reflect the actual health situation
of the victim). After translation, the original image is
removed from the system by the attacker and is not seen
by anyone else. For example, given an X-ray of a healthy
patient, the attacker generates a new image indicating an
abnormal heart condition when examined by either a med-
ical professional or a machine learning algorithm. Figure 1
illustrates the attack scenario. It is important to note that
medical professionals will analyze the image for presence
of any diseases. As the generated image is examined by
a professional, traditional adversarial sample attacks, or
naı̈ve attacks that tamper with the diagnostic end-results
are ineffective. We make the following assumptions:

First, the attacker can access and alter victim’s medical
images by compromising medical information systems.
Medical images are typically managed through a Picture
Archiving and Communication System (PACS) [51]. The
attacker can either access the data-at-rest, e.g., when it
is stored on a PACS server, or when data-is-in-motion,
e.g., by intercepting network traffic or by reading from
volatile memory. Real world deployments of PACS are
known to follow poor security practices, e.g., misconfigu-
rations, using default credentials, easy access by insiders,
rare security patch updates, and lack of encryption sup-
port [14], [15]. These flaws cause the PACS systems to
be highly vulnerable to social engineering and physical
insider attacks, thereby violating data integrity. In fact,
Mirsky et al. [16] demonstrated a successful pen-test using
a Raspberry Pi that was able to compromise a hospital’s
PACS framework, making it feasible to intercept scans
and credentials of staff members in plaintext, and install
a malware that allowed for a man-in-the-middle attack.

Healthy  
medical image Attacker 

Fake 
image 

Doctor 

Machine Disease 

Disease 

Figure 1. Overview of attack scenario.

PACS servers are also exposed to and thus accessible via
the internet [51]. This exposure amplifies the susceptibility
to attacks via web portals [14].

Second, the attacker can leverage publicly available
medical image datasets to build ML models for the at-
tack. There are large datasets covering different image
modalities, e.g., X-ray [52], retinal fundus images [26],
MRI [53], CT [54], [55], and PET [53]. The attack re-
quires annotations that capture anonymized patient IDs,
health conditions, i.e. whether patient is healthy or has
some disease(s), and any available characteristics such as
the stage or severity of the condition. Note that the attack
does not require any disease segmentation masks for these
images, e.g., a marked portion of the image that shows an
area affected by disease.

Third, the attacker has no access to any previous
medical images of the victims. The attack only requires a
single image from the victim, which can be accessed after
the patient undergoes a medical imaging procedure.

Lastly, no knowledge is assumed regarding how the
image is analyzed by the entity responsible for the vic-
tim’s healthcare. Images could be analyzed by a medical
professional or a machine learning algorithm (or both).
Also, we do not assume any query access to the machine
learning algorithm evaluating the victim’s health condi-
tion. Such an access is not required in our attack because
the attack visibly injects the targeted disease in the image,
unlike traditional adversarial inputs where imperceptible
adversarial noise is added to fool classifiers [56].

Attack goals. Three main goals include the following:
1. Translate a biomedical image to a new one that indi-
cates an attacker chosen health condition. The targeted
condition does not reflect the real health condition of the
patient. In the rest of the paper, we use the phrase “dis-
ease injection” to refer to this image translation process,
and the generated image is called the fake image. While
we primarily focus on injecting a disease condition, our
methods can also be used to translate an image with a
disease condition to one that appears healthy.
2. Inject disease while preserving identity of the victim.
For a successful attack, one must not only inject the
disease, but must also ensure that the fake image reflects
the “identity” of the victim. Biomedical images typically
contain patterns that are unique to their owners, and such
personal signatures can be used to verify the identity of
the owners [57]. This applies to modalities such as X-
rays, and retinal images that carry unique signatures of
the patients. If the attacker used a diseased X-ray from
another patient or generated a chest X-ray image that fails
to preserve the anatomical characteristics of the victim,
the image could be flagged by an identity verification
algorithm, or by a doctor on visual examination. In such
cases, the doctor or algorithm can compare the generated
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image against previously submitted images of the patient
to verify the identity, thus rendering the attack ineffective.
3. Sustaining the attack over time. Patients typically un-
dergo repeated examinations to follow up on a health
condition. This provides an opportunity for the attacker to
continue to manipulate the system. To enable subsequent
attacks, the attacker would need to control the disease
injection process to reflect the natural progression of a
health condition. Otherwise, there is a risk of raising
suspicion and being caught. Such repeated attacks can be
devastating for the patient and lead to wasted resources in
the health-care system. For this goal, we propose methods
to sustain the attack over time.

Comparison to CT-GAN [16]. The only closely related
work is CT-GAN, a deep-learning framework for 3D
medical image tampering. The key differences between
Jekyll and CT-GAN are as follows: (1) Practicality and
efficiency. To inject a chosen disease condition, CT-GAN
requires at least 14 complex steps, including extensive
pre-processing steps, identifying the region for disease
injection, and multiple manual touch-ups to make the
tampered region look realistic. Jekyll is more efficient
to use, as it only requires the single translation step of
passing the image through the generator. Jekyll is also
more practical for a generalized bad actor, as it requires no
knowledge of medically viable regions for disease injec-
tion. (2) Generalization to non-localized conditions. CT-
GAN uses an “in-painting” scheme to inject a disease into
a specific image region. However, this not only requires
that the chosen region be a medically viable location for
the disease, but also requires the disease to be localized in
the said region. Jekyll, on the other hand, learns to inject
the disease as a whole into the image. This enables in-
jection of diseases that are spread unevenly over multiple
anatomical regions e.g., injecting diabetic retinopathy into
retinal fundus images. It is unclear if CT-GAN can work
with such modalities. (3) Image Dimensionality. CT-GAN
is intended for use with 3D medical image modalities e.g.,
CT scans. Disease injection is performed by extracting
a 2D image slice from the middle of 3D DICOM im-
agery for the CT scan, applying the in-painting technique,
and re-inserting the modified slice. Jekyll performance is
demonstrated on 2D medical imagery but can potentially
be extended to 3D modalities by performing single-step
translation on a similarly extracted middle slice. Overall,
Jekyll and CT-GAN demonstrate new threats facing our
healthcare system.

3.2. Attack Methodology
We use a Generative Adversarial Network (GAN) [3] for
the attack. A GAN has two primary components, a gener-
ator and a discriminator that are trained in an adversarial
process. Given a dataset of images, the generator learns to
generate synthetic images that mimic the distribution of
the dataset. The discriminator learns to decide whether an
image produced by the generator looks real (i.e., belongs
to the true data distribution) or fake. The two components
are trained using a minimax objective where the generator
aims to produce fake images that are indistinguishable
from real images, while the discriminator aims to rightly
distinguish between real and fake images. GAN variants
have shown impressive results for high quality image
generation tasks [4], [5], [58].

Prior work using GANs in the medical domain mainly
focused on non-adversarial scenarios, e.g., for data aug-
mentation [59]–[62], de-identification [50], anomaly de-
tection in data [63], feature extraction [64], [65], and
image segmentation [66]–[71]. Our goal is not to pro-
pose a new GAN model to advance the state-of-the-art
in biomedical image generation. Instead, we show how
a GAN-based approach can be used to launch attacks
against medical diagnostics.

While many GANs have been proposed, not all of
them are suitable for the attack. In a vanilla GAN, the
generator takes as input a noise vector z drawn from some
distribution pz(z) (e.g., normal distribution) to generate
an image, while the discriminator provides feedback to
improve the generation process. Different input vectors
will produce different images, but in general it is hard
to reverse engineer how the noise space maps to specific
semantic properties of generated images, e.g., to represent
a disease or identity of a patient. Therefore, this does
not fit our scenario—having only a latent vector as input
makes it hard to control the generation process. Another
challenge is that the attacker only has a single image of
the victim. This rules out approaches that train a GAN on
past images of the victim to generate identity preserving
images. Instead, we propose to learn from medical images
of other patients (publicly available data) for the attack.

Jekyll: Our attack framework. In this section, we
present Jekyll, a GAN-based image style transfer model
for attacking medical diagnostics. A style transfer GAN
that takes an input image as a condition, and “translates”
it to a version that preserves the content, while changing
the style [72]. In our context, content includes image
characteristics that capture identity of the patient, while
style captures the health condition of the victim. Note that
using an image as input provides more control over the
generation process, compared to a vanilla GAN.

One challenge is that an image-to-image translation
GAN requires paired input-output data. For example,
Pix2Pix GAN [72] learns from paired data to transfer
style. In our setting, this would require a pair of images
belonging to each patient, i.e., one with no disease, and
the other with a disease. Such paired data is usually not
publicly available and can be challenging for the attacker
to obtain. Instead, we propose to do style transfer from
unpaired collections of images, e.g., a set of images of
arbitrary patients with no disease, and another set with a
disease (again an arbitrary set of patients). The recently
proposed CycleGAN [73] best fits this scenario, and we
propose to build on top of this approach. A key advan-
tage of our approach is that we will automatically learn
characteristics of the disease (style), and identity (content)
from the image collections, without requiring any human
intervention or image segmentation masks (that highlight
regions indicative of disease or those that capture identity
of a patient). This enables a single-step disease injection
attack, unlike prior work (CT-GAN).
Jekyll design. Let X be the domain of images having
health condition CX , and Y be the domain of images
diagnosed with another condition CY . Training samples

in X are {xi}Ni=1, and in Y are {yi}Mi=1. Our goal is to
translate images from X to Y , i.e. inject a new disease
condition while preserving the identity of the patient.
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Without loss of generality we consider the victim to be
a healthy person. We consider health condition CX to
denote a healthy condition, i.e., with no disease, and CY

to denote a single real disease. Jekyll can also be used for
disease removal, in which case CX would include patients
with a disease, and CY will be healthy patients.

An optimal image translator can translate images in
X to ones that match the distribution of images in Y .
But because of the unpaired data setting, there are infinite
possible mappings from X to Y , and we want to produce
a specific mapping—one that preserves the identity, while
injecting a disease. We will later explain that this will
require the use of two generators, and two discriminators
to enable transfer from one domain to the other. One
generator, G : X → Y , transfers images from X to Y , and
another generator F : Y → X transfers images from Y to
X . One discriminator DY tries to distinguish real images
in Y from images generated by G, another discriminator
DX tries to distinguish real images in X from images
generated by F . Below, we explain how Jekyll enables
style transfer for the attack. Jekyll is trained to optimize an
objective function that includes the following loss terms.

Adversarial process. This part captures the basic ad-
versarial loss for the GAN. A generator produces images
that fall in a certain domain, and the discriminator tries
to differentiate between generated and real images. We
use a least-squares GAN loss [73] for our adversarial loss
to stabilize training and to improve image quality. It is
computed as:

LGAN (G,DY , X, Y ) = Ey∼pdata(y)
[DY (y)

2]

+ Ex∼pdata(x)
[(DY (G(x))− 1)2]

(1)

We use a similar adversarial loss function for the re-
verse direction, F : Y → X using the discriminator
DX . The final adversarial loss is as follows: Ladv =
LGAN (G,DY , X, Y ) + LGAN (F,DX , X, Y ). The two
generators try to minimize this objective, while the two
discriminators try to maximize it.

Disease Injection. In theory, the adversarial loss
should be sufficient to inject a disease. However, we
empirically observe that this is not the case. Disease char-
acteristics in biomedical images can be subtle, e.g., small
change in heart shape in a Chest X-ray, minor changes
in a retinal vascular pattern. It is simple for the GAN
to trivialize the style differences and simply replicate the
input image. Thus, we incorporate an additional disease
loss term to enforce disease injection.

A pre-trained disease classifier S is used to calculate
the disease loss and provide additional feedback to the
generator. Generated images from G are fed into S to ob-
tain a prediction probability S(G(x)|CY ) for belonging to
disease condition CY . If G(x) receives a high prediction
probability to be in class CY , we add a small penalty,
and a high penalty if the prediction probability is low.
This pushes Jekyll to correctly inject the targeted disease
condition. We define

Ldisease = Ex∼pdata(x)
[l(S(G(x)|CY ), CY )] (2)

where l is a cross entropy function.
Preserving identity. As these are unpaired images, the

adversarial loss term can map one image in X to any

random point in domain Y . This is not desirable, because
we want to find a mapping that preserves identity. To
reduce the space of possible mappings in Y , we draw on
work from CycleGAN and apply a cycle consistency loss
to the GAN. Put simply, an image x when translated to
Y and reconstructed back to domain X should be mostly
similar to the original x, i.e., F (G(x)) ≈ x. Similarly,
there is a reverse cycle loss for translations from Y to X
as well. The cycle loss is computed as:

Lcycle = Ex∼pdata(x)
[‖F (G(x))− x‖1]

+ Ey∼pdata(y)
[‖G(F (y))− y‖1] (3)

While we expect the cycle loss to find mappings to the
other domain that are easier to reconstruct, it still lacks a
concrete notion of identity. This is because the cycle loss
formulation does not explicitly characterize what defines
the identity of the patient. We argue that cycle loss is
not sufficient to preserve identity all the time. To better
preserve identity, we propose an additional identity loss
term defined as perceptual loss given by

Lidentity = Ex∈pdata(x)[‖E(x)− E(G(x))‖1
+ ‖E(F (G(x)))− E(G(x))‖1)] (4)

where E(.) represents features extracted from a specific
layer in a pre-trained identity classifier. Recall that attacker
has a single image of the victim, so it is hard to train
an identity classifier that includes all victims. Using a
perceptual loss as opposed to a classification loss (as
in the disease loss term) helps to overcome this issue.
Perceptual loss allows us to use an identity classifier
trained on any available set of patients because we only
use features from an internal layer.

Finally, the overall loss is computed as:

L(G,F,DX , DY ) = λadvLadv + λdiseaseLdisease

+ λidentityLidentity + λcycleLcycle

(5)

and the associated weight terms control the extent to
which each property is enforced.

Sustaining the attack over time. Ideally, when victims
undergo repeated examinations, disease injections should
match the expected progression of a disease, e.g., disease
becoming severe over time. We present two ways in which
Jekyll can be used to enable such repeated attacks:
(1) Attacker can use publicly available datasets that cap-
ture different stages of the disease in question, and create
multiple Jekyll models, each one trained to inject a specific
stage of the disease into the patient’s image. In fact,
such datasets exist—we use a dataset of retinal fundus
images to inject different stages of Diabetic Retinopathy
(Section 5.1.4).
(2) If there is no data capturing progression of a disease,
then we propose a simple alternative solution. Given a
dataset capturing a certain (late) stage of a disease, and
a healthy stage, attacker can inject intermediate stages
of the disease using simple linear interpolation over the
available images. More specifically, the attacker will train
a single Jekyll model to translate a non-disease image to
a disease stage (for which data is available). Next, given
a non-disease image Ind belonging to a victim, and a
disease injected image, Id produced by Jekyll, attacker can
use linear interpolation to approximate intermediate stages
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(represented by If ) of the targeted disease as follows:
If = α · Id + (1− α) · Ind. Here α represents the degree
of disease injection. Such injection is possible because
Jekyll produces output images that are perfectly aligned
with input images. In Section 5.1.4, we show how one can
produce convincing attack images capturing intermediate
stages of Cardiomegaly (heart condition) using this ap-
proach. However, we acknowledge that such interpolation
schemes may not be meaningful for all disease conditions.

Jekyll model architecture. Generator and Discrimi-
nator. Architecture for both generator and discriminator
is inspired by CycleGAN [73], and we build on top of
a publicly available implementation from GitHub [74].
Input and output image resolutions of the generator are
256 × 256. Discriminator is based on a 70 × 70 Patch-
GAN [72], that decides whether 70 × 70 overlapping
image patches are real or fake, resulting in a 32× 32× 1
dimensional output. This has been shown to outperform a
discriminator that evaluates the entire image to determine
whether it is real or fake. More details of the generator and
discriminator architecture are in Table 12 in Appendix C.
Note that Jekyll can be adapted to produce higher resolu-
tion images by borrowing architectural elements from PG-
GAN [4]. PGGAN can produce high resolution images by
starting from a low resolution version, and progressively
increasing the size (layers) of the network.

Disease and Identity Classifiers. Recall that Jekyll
requires pre-trained disease and identity classifiers to pre-
serve identity while injecting disease. We use the same
architecture for both classifiers, but they are trained dif-
ferently depending on the dataset.1 Disease classifier is
a binary classifier predicting condition as non-disease
and the targeted disease. Identity classifier is a multi-
class classifier predicting the identity of a person. Both
classifiers use the DenseNet-121 model architecture [75].
For both models, we replace the last classification layer
of DenseNet-121 with a dense layer of 256 neurons,
a dropout layer with rate of 0.5, followed by a final
classification layer (that fits our task). To compute the
identity loss, we extract the output of the convolution layer
before the last dense block in DenseNet-121. More details
of Jekyll’s architecture are in Appendix C.

Alternative architectures for Jekyll. Our techniques
behind Jekyll (to inject disease and preserve identity) can
be applied to other image-to-image translation GANs as
well. In Section 5.1.5, we investigate attack effectiveness
when using alternate architectures. We explain two other
architectures below.

StarGAN. StarGAN is an image-to-image translation
model that improves over CycleGAN [76] by providing
many-to-many domain translation capabilities. Unlike Cy-
cleGAN, StarGAN only requires a single generator and
discriminator, but leverages an auxiliary domain classifier
to ensure successful domain translation. StarGAN also
includes a cycle loss term similar to CycleGAN to pre-
serve content. We adapt StarGAN to fit into our Jekyll
framework by adding a disease and identity loss term. To
compute disease loss, we use the auxiliary domain classi-
fier available in StarGAN, but use an external classifier for
identity loss. Additionally, we observed that StarGAN’s
auxiliary classifier suffers significantly when classes are

1. This is because we use different types of transfer learning schemes.

imbalanced. To deal with such imbalance, we upsampled
the underrepresented class, and replaced the binary-cross
entropy loss used for the domain classification with focal
loss [77]. More details are in Appendix C.

IPCGAN. Identity Preserving Conditional GAN or
IPCGAN is an image translation GAN to synthesize face
images in a targeted age group, while preserving identity,
e.g., translate a teenager’s face image to one that looks
50+, while preserving identity. To achieve this, IPCGAN
uses an age classifier to enforce translation to the new
age group and implements identity loss as perceptual loss.
However, IPCGAN lacks any kind of reconstruction/cycle
loss, as used in Jekyll. To fit IPCGAN into Jekyll frame-
work, we replace the age classifier by a disease classifier,
and use our patient identity classifier. We do not add a
cycle loss term to its training objective. More details are
in Appendix C.

4. Experimental Setup for Evaluating Attack
To build Jekyll, we need to first train the disease and
identity classifiers, followed by the GAN component (that
uses the pre-trained disease and identity classifiers). We
build two versions of each of the disease and identity
classifiers. One version of classifiers are used to train the
Jekyll, and are called the attack disease (Cd

a ) and identity
(Ci

a) classifiers. The other version of classifiers are used
to evaluate the success of the attack, and are called the
evaluation disease (Cd

e ) and identity classifiers (Ci
e). Given

images translated by Jekyll, the evaluation classifiers help
in answering the following questions. (1) Did we success-
fully inject the disease? (2) Did we preserve the identity?
We ensure that attack and evaluation classifiers are trained
on datasets with no patient overlap.

For all attacks, we start with a victim set of healthy
patients (i.e., having no diseases), and evaluate attack
success by injecting different diseases (or different stages
of same disease).

4.1. Medical Datasets

NIH chest X-ray dataset [52].2 This is a publicly
available dataset of 112,120 frontal chest X-ray images
of 30,805 unique patients. Images are annotated with
anonymized patient IDs, with labels indicating presence
of one or more of 14 diseases. We demonstrate disease
injection for two of these diseases, namely Cardiomegaly,
and Pleural Effusion. Cardiomegaly causes an enlarged
heart, usually the result of heart disease. Pleural Effusion
is a condition that causes buildup of excess fluid around
the lungs. These conditions are chosen because prior work
demonstrated high detection accuracy for both using deep
learning [17].

We partition the dataset by patients into two subsets.
One partition is used for training Jekyll, including the
GAN component, and the two attack classifiers (Cd

a , and
Ci

a). The second partition is used only for evaluation
which includes the victim set, and data for training the
evaluation classifiers (Cd

e and Ci
e). The attack partition

contains 24,000 patients, and the evaluation partition has
6,805 patients. Partitioning was performed in a manner
that allows us to build reliable evaluation classifiers, e.g.,

2. https://nihcc.app.box.com/v/ChestXray-NIHCC

144



TABLE 1. # IMAGES USED TO TRAIN AND EVALUATE Jekyll.

Datasets # Train images # Victim images
Disease Non-disease

Cardiomegaly 35,352 1,349 6,235

Effusion 35,352 4,977 6,883

Severe DR 32,728 1,000 680

Proliferative DR 32,728 982 703

victim set should be large, and include patients with
at least 10 images, so we could build a high quality
identity classifier for evaluation (Ci

e). More details of data
preparation are available in Appendix C.

The statistics of the data used to train and evaluate
Jekyll are shown in Table 1 (see rows for Cardiomegaly
and Effusion). Once trained, Jekyll is tested on over 6,000
victim images for both disease conditions. We also make
sure that the victim set only includes patients with non-
disease images (which can be then injected with a dis-
ease). Victim set includes images that correctly pass the
disease classification test by Cd

e (as non-disease), and the
identity classification test by Ci

e (as having the correct
identity). This ensures that any effected style transfer is
due to the success of Jekyll, and not due to misclassi-
fications by the evaluation classifiers. Details of dataset
(from attack and evaluation partition) used to train the
attack and evaluation classifiers are in Tables 14 and 15
in Appendix C.

Retinal Fundus images. This is a publicly available
dataset3 provided by EyePACS, a platform for retinopathy
screening. It consists of pairs (left and right eye) of
retinal fundoscopy images for 88,702 patients. Images
are annotated with anonymized patient IDs, with labels
indicating different stages of Diabetic Retinopathy (DR)—
no disease, mild, moderate, severe, and proliferative. DR
is a disease impacting blood vessels in the retina leading
to possible vision loss in people with diabetes. We demon-
strate injection of severe and proliferative DR stages.

We prepare the dataset following a similar methodol-
ogy as used for chest X-rays. Dataset statistics are shown
in Table 1 (see rows for severe and proliferative DR).
For both stages, our victim set includes over 600 images.
Tables 14 and 15 in the Appendix show statistics of data
used for the attack and evaluation (disease and identity)
classifiers. More details are in Appendix C.

4.2. Training Jekyll, and evaluation classifiers

All models are implemented using Tensorflow v1.12.0
framework for Python.4 An NVIDIA Titan Xp GPU with
12GB RAM, on a host with Intel(R) Xeon(R) W-2135
CPU @ 3.70GHz and 64 GB RAM was used for training.

Jekyll. For all experiments, the Adam optimizer is used
with learning rate of 0.0002, β1 = 0.5 and β2 = 0.999.
The learning rate remains unchanged for the first 100
epochs and is then decreased linearly for the next 100
epochs. For each dataset, we empirically determine the
weights for each of the loss terms. Using a validation
set, we empirically estimate weights that produce the
highest quality images, while ensuring successful injection

3. https://www.kaggle.com/c/diabetic-retinopathy-detection/data

4. Only exception is the StarGAN version of Jekyll which is imple-
mented in PyTorch.

TABLE 2. TESTING ACCURACIES OF THE DISEASE AND IDENTITY

CLASSIFIERS USED.

Datasets Cd
a Cd

e Ci
a Ci

e

Cardiomegaly 84% 80% 98.2% 96.6%

Effusion 87% 80.7% 98.2% 96.6%

Severe DR 89.9% 90.4% 98.5% 99.9%

Proliferative DR 87% 87.1% 98.5% 99.9%

of disease and identity preservation. Training one instance
of Jekyll takes ≈17 hours. Training configuration for each
dataset and alternative architectures are in Appendix C.

Disease classifiers. For both datasets (X-ray and reti-
nal), we leverage transfer learning. For the X-ray datasets,
the teacher model is trained on relevant partitions (attack
or evaluation depending on the classifier) of the NIH
Chest X-ray dataset to diagnose all 14 available diseases
(multi-label classifier), using the training setup used by
Rajpurkar et al. [17]. To build our X-ray student model,
we initialize our architecture (see earlier Section 3.2)
with weights from the teacher model, and only fine-tune
the last 70 layers. For the retinal DR disease classifiers,
the teacher model is a DenseNet-121 architecture trained
on ImageNet [75], and all layers are fine-tuned during
training. Table 2 shows the accuracies of the (attack and
evaluation) disease classifiers (Cd

a , and Cd
e ) when applied

to balanced test datasets. All classifiers have fairly high ac-
curacy. Training configuration is available in Appendix C.

Identity classifiers. We again leverage transfer learning.
For all datasets, the teacher model is a DenseNet-121
model trained on ImageNet. For each model, weights are
initialized from the teacher model, and all layers are fine-
tuned during training. The attack identity classifier, Ci

a, is
trained to predict a random subset of patients in the Jekyll
training dataset. It is not necessary to train the identity
classifier on all patients in Jekyll training data, as we use
a perceptual loss. For the retinal dataset, we perform data
augmentation for both its training and testing data as we
have limited data (only 2 images per patient). Blurring
and random rotations are used to augment the dataset
and create a set of 14 (including the original) images
per patient. Table 2 shows the testing accuracies of the
(attack and evaluation) identity classifiers (on balanced
test datasets). All identity classifiers achieve over 96%
accuracy. Training configuration is in Appendix C.

5. Evaluating Effectiveness of Attacks
We structure the evaluation of Jekyll based on our pri-
mary goals. More specifically, we aim to demonstrate
that images generated by Jekyll show signs of disease
and preserve patient identity. This requires misleading
both real-life medical professional diagnostics, as well as
machine learning classifiers that are used to aid diagnos-
ticians. Therefore, we perform evaluation by: (1) different
machine learning tools, and image quality metrics, and (2)
by consulting medical professionals.

5.1. Evaluation by Machine Learning Tools and
Image Quality Metrics

In this section, we examine different aspects of Jekyll’s
effectiveness and design in detail. This includes evaluat-
ing: (1) image quality, (2) disease injection, (3) identity
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Figure 2. Real and fake X-ray images with Cardiomegaly.

Figure 3. Injection of Cardiomegaly, red rectangles label the enlarged
heart.

preservation, (4) feasibility of sustaining the attack over
time to match progression of disease, (5) effectiveness
when using alternative architectures, and (6) design of
Jekyll’s training objectives through an ablation study. For
most of our evaluation, we focus on Cardiomegaly, and
Effusion for X-rays, and proliferative DR for retinal im-
ages. We consider an earlier stage of DR—Severe DR,
when evaluating progressive injection of disease.

5.1.1. Image Quality.
We start with analyzing quality of images generated by
Jekyll. Image quality is important, otherwise the fake
images can be easily caught by human inspection.

MSSIM. We use Multi-scale Structural Similarity
(MSSIM) metric to evaluate image quality. MSSIM is
a widely used objective image quality metric that corre-
lates well with perceived image quality [78]. The met-
ric is based on the idea that humans are sensitive to
changes in structure, luminance, and contrast. This metric
also considers perceived distortion from different view-
ing angles by analyzing the images at different scales.
Given a reference image X , and a distorted version Y ,
MSSIM(X,Y ) ranges between 0 and 1, with 1 indicat-
ing that images are identical, and 0 indicating no structural
similarity.

For each dataset, we first compute the MSSIM score
between random pairs of real disease images, say between
the sets Real A and Real B. Next, we compute MSSIM
between images in real A and a random set of fake images
with the same disease type/stage. We expect the MSSIM
scores between real and fake images to be similar or
higher than the scores between real images. If the MSSIM
score between real and fake images is significantly lower
than between real images, it would indicate that fake im-
ages look very different from real images of the same type
(i.e., disease). Table 3 shows the average MSSIM scores,

Figure 4. Real and fake X-ray images with Pleural Effusion.

Figure 5. Real and fake Retinal Fundus images with Proliferative DR.

and the scores are within a similar range, suggesting that
perceived image quality of fake images when compared
to real images is satisfactory.

Figures 2, 4 and 5 show samples of fake and real
images with Cardiomegaly, Effusion, and Proliferative
DR, respectively. In these figures, for each fake image, a
real image which is closest to the fake image in terms of
L2 score is chosen. Showing such similar samples of real
images helps to better understand image quality. Overall,
we find that Jekyll is able to generate high quality images
that are hard to distinguish from real images. More image
samples can be found in Figure 15 in the Appendix.

FID and Inception score Inception score [78] and
Fréchet Inception Distance [78] are popular quantitative
metrics to evaluate quality of GAN generated images.
Both rely on extracting embeddings from models trained
on the ImageNet dataset. However, they are not suitable in
our case, because the ImageNet dataset does not include
biomedical images.

5.1.2. Disease Injection Success.
Disease injection rate. Success of disease injection is

measured using the evaluation disease classifier, Cd
e . We

compute a disease injection rate, Rd, as the percentage of
generated images classified by Cd

e as having the disease.
The rates are listed in the second column of Table 4.
Disease injection rates are high for all diseases, with
Proliferative DR showing 100% injection rate.

Figures 3, 6, and 7 show successful disease injections
of Cardiomegaly, Effusion and Proliferative DR, respec-
tively. The real non-disease image of the victim is shown
next to each fake image. Changes can be observed in
the fake images compared to the non-disease images.
For Cardiomegaly in Figure 3, we see an enlarged heart
(highlighted by red rectangle) compared to the non-disease
image of the victim. Jekyll intelligently learned to selec-
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Figure 6. Injection of Pleural Effusion, red rectangles label the fluid.

Figure 7. Injection of Proliferative DR. Cotton wool spots indicate
disease.

tively modify the heart region, while keeping rest of the
image mostly similar. In Figure 6, one can observe build-
up of excess fluid outside the lungs (marked by the red
rectangles) as expected for Effusion. In the case of retinal
images in Figure 7, there are some noticeable changes as
well—Jekyll learned to generate “cotton wool”-like spots
on the retina when DR is observed. This matches real
description of symptoms for a patient with DR [79]. We
provide more samples of disease injection in Figure 12 of
the Appendix.

To better understand why we failed in some cases (for
Cardiomegaly and Effusion), we manually went through
some of the failed examples. Failed examples of Car-
diomegaly are shown in Figure 8. We are able to identify
two types of failures: First, there are cases where the
generated image does show an enlarged heart, but maybe
not large enough to pass the classifier test. Second, the
original victim images did not have a distinct heart shaped
region in the image, so it is harder for Jekyll to make
modifications to that region. Failed examples of Pleural
Effusion are shown in Figure 8. In failed examples, we
observe only a partial buildup of fluid on one or both sides
of lungs, which, while visible, is not significant enough to
pass the classifier test. More failed samples are available
in the Appendix (Figures 13, 14).

Disease classifier model interpretation. To further
evaluate disease injection success, we leverage prior work
on chest X-rays to identifying regions most indicative
of a disease. Put simply, we check whether a machine
learning model thinks we injected the disease in the right
way, e.g., is the condition injected in the right place?
Rajpurkar et al. [17] designed a model called ChexNet and
present a method to identify regions of interest (for disease
classification) in Chest X-rays by analyzing convolution
feature maps. We use their tool and Figure 9 shows heat-

Figure 8. Examples of failure cases for Cardiomegaly and Effusion.

TABLE 3. MSSIM SCORES TO EVALUATE IMAGE QUALITY OF FAKE

IMAGES.

Datasets MSSIM Score
Real A vs. Real B Real A vs. Fake B

Cardiomegaly 0.456 0.449

Effusion 0.439 0.429

Proliferative DR 0.516 0.515

maps visualizing regions indicative of Cardiomegaly (red
means higher probability) for both real and fake images. In
both real and fake X-ray images with Cardiomegaly, we
observe red regions highlighting the central and upper-
right regions of the heart. In these regions, we observe
visual enlargement of the heart, which is indicative of
Cardiomegaly.

5.1.3. Identity Preservation Success.
Identity preservation rate. Similar to disease injection

rate, we compute identity preserving rate, Ri using Ci
e.

The percentage of generated images classified into the cor-
rect patient ID is the identity preserving rate. This is listed
in Table 4, and is over 88% for all datasets, with X-ray
modalities showing over 94% identity preservation rate.
In Figures 3, 6, and 7, characteristics of generated images
are quite similar to the victim’s original image, except for
any changes due to disease injection. The generated X-
ray images presented in Figures 3, 6 indicate preservation
of anatomical structure (positioning and shape of ribs,
thoracic cavity, lungs, etc.), while generated retinal images
in Figure 7 mostly preserve the vessel patterns as well.

We further investigated the samples that fail to pre-
serve identity. Figures 8 shows failed examples of Car-
diomegaly, and Effusion. Failed examples of Proliferative
DR are in the Appendix (Figure 17). Overall, we suspect
that injection of disease patterns disrupted other regions of
the image that may have been crucial to capturing identity.
For example, Effusion often introduces a fluid that can
obscure large areas of the lung regions, hiding thoracic
structure we believe to be crucial to patient identity.
Similarly, in Proliferative DR, the ‘cotton-wool’ spots that
arise due to insufficient blood supply, can often degrade
the retinal structure associated with the patient.

Comparing retinal vessel masks. To further demon-
strate identity preservation, we compare retinal vessel
masks of the non-disease image and the generated im-
age. The vascular patterns are known to aid in identi-
fication [80]. We thus aim to investigate the similarity
between the vessel mask structure of the input non-disease
image, and the generated image. If identity is preserved,
we expect the vessel masks to be visually similar. To
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Figure 9. Examples of heat-maps of real and fake cardiomegaly X-rays.

Figure 10. Vessel segmentation masks of input non-disease and output
Proliferative

DR retinal images.

extract the vessel mask, we train a U-Net based vessel
segmentation model [81] using DRIVE dataset [82]. Next,
we apply the vessel extraction model to both the victim’s
original image, and the generated image. Paired examples
are shown in Figure 10. We can see the vessel structure
is mostly preserved in the generated images. To obtain a
quantitative measure, we compute MSSIM scores between
the input and output vessel structures. For Proliferative
DR, we obtain an MSSIM score of 0.71. Score is not a
perfect 1.0, because blood vessels can swell and leak in
the case of Proliferative DR. We also examined MSSIM
scores for Severe DR, and obtain higher scores of 0.89,
which is expected as this is a less advanced stage.

5.1.4. Sustaining the Attack Over Time.
One of our attack goals is to enable repeated attacks using
Jekyll over time. We consider a setting where attacker
wants to mimic the natural progression of a disease con-
dition, e.g., condition worsening over time. As discussed
in Section 3.2, we consider two scenarios.

Disease stage data available. We demonstrate the effi-
cacy of this approach using the retinal dataset. In addition
to Proliferative DR, we demonstrate injection of an earlier
stage, namely Severe DR. Disease injection (Rd) and
identity preservation (Ri) rates for this stage is presented
in Table 5. Jekyll is able to achieve over 99% disease
injection rate, and over 88% identity preservation rate for
both Proliferative and Severe stages. Sample images are
provided in Appendix A (Figure 16).

Disease stage data unavailable. In this case, attacker
has no data to train Jekyll to target different stages. We use
linear interpolation (Section 3.2) to produce intermediate
stages of Cardiomegaly. Figure 11 illustrates one example,
where we produce 3 intermediate stages of Cardiomegaly
using degree of disease injection, α ∈ [0.25, 0.50, 0.75].
We see that this simulates enlargement of heart over
time, while preserving patient identity. We further verified
several such examples (using different victim images)
with a doctor experienced in analyzing chest X-rays (who
also participated in our user study in Section 5.2). The

TABLE 4. DISEASE INJECTION (Rd) AND IDENTITY PRESERVING

(Ri) PERFORMANCE OF Jekyll.

Dataset Rd Ri

Cardiomegaly 82.8% 95.2%

Effusion 95.7% 94.4%

Proliferative DR 100% 88.4%

TABLE 5. DISEASE INJECTION (Rd) AND IDENTITY PRESERVING

(Ri) PERFORMANCE OF PROGRESSIVELY INJECTING A DISEASE.

Dataset Rd Ri

Severe DR 99.6% 97.5%

Proliferative DR 100% 88.4%

doctor confirmed that these intermediate stages are indeed
plausible. To obtain a quantitative measure for progressive
disease injection, we further apply the evaluation disease
classifier, Cd

e on all intermediate stages of all victims. The
classifier produces a monotonically increasing probability
of image being in the Cardiomegaly class, when we
increase α (as shown in Figure 18 in Appendix A).

Overall, in both settings, Jekyll is able to mimic pro-
gression of a disease.

5.1.5. Effectiveness of Jekyll when using alternative
architectures. We evaluate alternative neural network
architectures to implement Jekyll. Two existing image-
to-image translation models, StarGAN and IPCGAN are
adapted to fit into Jekyll’s framework (discussed earlier
in Section 3.2). In addition, as a baseline, we evaluate
how a basic image-to-image translation framework would
perform on our attack dataset. For this baseline, we choose
the Pix2Pix [72] model, an image-to-image translation
GAN that requires a paired dataset. Training objectives for
Pix2Pix include an adversarial loss term, and an L1 loss
term that minimizes the differences between the generated
image and the targeted image in the pair. There are no
other loss terms to enforce disease injection or identity.
Since we do not have paired data, we use random pairs
of non-disease and disease image to train Pix2Pix.

Table 6 presents disease injection and identity preser-
vation rates for all architectures—StarGAN, IPCGAN and
Pix2Pix. We note that all architectures produce high qual-
ity images. However, there is variance in their attack effec-
tiveness, and our original architecture outperforms all of
them. StarGAN performs reasonably well, achieving over
70%, and 79%, disease injection and identity preservation
rate, respectively for all datasets. We suspect that using a
single generator-discriminator pair in StarGAN (compared
to using 2 pairs in our framework) is negatively impacting
its translation performance. On the other hand, IPCGAN
achieves high identity preservation rate of over 99% for
all datasets, but disease injection rates are lower, with the
retinal dataset showing only over 2% performance. While
adjusting the weights of the loss terms, we observe that
it is necessary to upweight the identity loss term in order
to obtain passable image quality. This likely explains the
high Ri rate. Any attempt to raise the weight of the disease
loss term resulted in lowered image quality. Also note
that IPCGAN does not include a cycle loss term. Lastly,
Pix2Pix exhibits high disease injection performance, but
almost completely fails to preserve identity. This is ex-
pected given that Pix2Pix expects paired data (which is
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TABLE 6. DISEASE INJECTION (Rd) AND IDENTITY PRESERVATION (Ri) PERFORMANCE FOR ABLATION STUDY AND ALTERNATIVE

ARCHITECTURES.

Datasets Jekyll Only Lcycle
Ldisease Lidentity Pix2Pix IPCGAN StarGAN
removed removed

Rd Ri Rd Ri Rd Ri Rd Ri Rd Ri Rd Ri Rd Ri

Cardiomegaly 82.8% 95.2% 45.2% 94.2% 49.4% 94.6% 75.7% 86.7% 62.2% 0.3% 36.1% 99.3% 74.6% 79.8%

Effusion 95.7% 94.4% 44.2% 96.9% 55.2% 97.1% 97.5% 91.4% 97.6% 0.08% 64.3% 99.3% 70% 90.8%

Proliferative DR 100% 88.4% 96.7% 85% 89.3% 93.8% 99.8% 82.2% 100% 0.1% 2.4% 98.5% 87.9% 93.1%

Figure 11. Examples of progressive injection for Cardiomegaly using
linear interpolation.

not available) and includes no train objectives to preserve
identity (cycle loss or identity loss).

5.1.6. Ablation Study. Table 6 presents results of our
ablation study. In all experiments, we retain the adversarial
loss and cycle loss (Lcycle) terms, as they are basic build-
ing blocks of Jekyll’s training objectives. On removing
the disease loss term (Ldisease), disease injection rates
decrease for all three datasets, with X-ray datasets ex-
hibiting Rd below 55%. Hence, the adversarial loss term
on its own is insufficient for effective disease injection all
the time, and we need a disease loss term. However, since
disease-specific perturbations are no longer enforced, the
patients’ structural integrity is easily preserved, and the
identity preservation rate (Ri) is high for all diseases.

To preserve identity, Jekyll relies on the cycle
loss (Lcycle) and identity loss (Lidentity) terms. When
Lidentity is removed, Ri decreases for all three diseases—
an average of 5.8% decrease for chest diseases, and 6.2%
decrease for Proliferative DR. However, the cycle loss
term helps to avoid significant drop in identity preser-
vation rate. We also observe noise artifacts, along with
blurring in images generated without the identity loss.
Therefore, the perceptual nature of identity loss con-
tributes to image quality as well.

When both Ldisease, and Lidentity are removed, Jekyll
only uses the cycle loss term, and is equivalent to the
vanilla CycleGAN translation model [73]. The disease
injection rate drops significantly for both X-ray datasets
(below 46%), while Ri is high across all datasets. This
is because when disease perturbations are not enforced,
it is easy to achieve high Ri. This shows that a vanilla
CycleGAN model is not sufficient for our attack.

To summarize, Ldisease is crucial to achieve high
disease injection rate. But substantial disease perturbations
can hurt the identity of the patient, and therefore Lidentity

helps to balance things out, and preserve identity.

5.2. Evaluation by Medical Professionals

To understand Jekyll’s ability to mislead medical profes-
sionals, we recruit medical professionals experienced in
Chest X-ray diagnostics and conduct a user study. We

investigate two key questions: (1) Can we convince medi-
cal professionals that Jekyll generated images contain the
targeted disease condition? (2) Can medical professionals
distinguish between real images and Jekyll generated
(fake) images? We use the Chest X-ray dataset, and
Cardiomegaly as the attacker targeted disease condition.
Due to logistical difficulty in recruiting professionals with
adequate experience in assessing retinal fundus imagery,
we limit the study to the Chest X-ray dataset. Note that
our study does not impact any real patients. Prior to con-
ducting our study, we submitted a human subject protocol
and received approval from our local IRB board.

We recruited three qualified medical practitioners, with
extensive experience in evaluating chest X-Rays. Two
evaluators are resident physicians in the Internal Medicine
Department at a hospital. The third evaluator is a senior
resident physician in the General Medicine Department.
All three evaluators work at different hospitals. A pre-
study questionnaire confirmed that all three practitioners
have experience with analyzing chest X-rays.

The study requires both fake images with disease con-
dition, and real images with and without disease condition.
We sampled disease images (real and fake) from those
having a disease probability higher than 0.8 when eval-
uated by the evaluation disease classifier (Cd

e ). Further,
we observe that real X-rays contain watermarks (usually
in upper right corner). Jekyll images contained slightly
blurry reproduction of watermarks in the original victim’s
image. To ensure a fair evaluation, where evaluators would
focus on the biomedical content, rather than quality of
watermarks, we apply a simple automated post-processing
step to sharpen the watermarks in fake images. 5

5.2.1. User Study Part 1: Evaluating Disease Injection.
In this task, given an X-ray image, evaluator has to
determine whether it contains the disease condition of
Cardiomegaly. Evaluators are offered three choices: (1)
‘Disease’, image indicates the disease condition, (2) ‘No
disease’, no disease condition is observed, and (3) ‘Other’,
if evaluator is unable to choose (1) or (2) for some reason.
We did not enforce a time limit to evaluate a given image.
Figure 19 in Appendix B shows our survey page.

Each evaluator is shown a total of 150 images, out
of which 100 are real, and the remaining 50 are fake
images containing Cardiomegaly. Among the 100 real
images, 50 contain no disease condition, and the other
50 contain Cardiomegaly. Evaluators are not aware of the
presence of fake images. Each of the three evaluators
independently evaluated all 150 images, in a total of 5
sessions (30 images per session), providing us a total

5. We use a similar approach from Section 3.2 (on sustaining attack
over time) and apply a linear interpolation scheme in a localized region
containing the watermark, using the original non-disease image and the
generated image.
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of 450 judgements. Out of these 450 judgements, we
discarded 5 where the evaluators were uncertain about
their decision (‘Other’ class).6

We start by investigating the baseline accuracy of the
evaluators for this task, by comparing their judgments on
the 100 real images. Second column of Table 7 shows the
individual accuracy of evaluators, as well as the average
and majority accuracy. The average accuracy is computed
by taking the mean of the individual accuracies, while
majority accuracy is computed by taking the majority
judgments of the three evaluators. On average, accuracy of
the evaluators is 0.868, while when taking majority judg-
ments, the accuracy rises to 0.909. Corresponding false-
positive and false-negative rates are provided in Tables 10
and 11 (in Appendix). The inter-annotator agreement,
when computed using Fleiss’ κ metric, is κ = 0.62
(p < 10−6) indicating substantial agreement.

Next, we analyze the judgments of evaluators on the
50 fake images (with Cardiomegaly) to understand the
ability of Jekyll in successfully injecting realistic look-
ing disease conditions. Column 3 of Table 8 shows the
percentage of fake images that were judged to contain
diseased symptoms by zero, at least one, at least two or
by all three evaluators. We can see that for 60% of the
cases all evaluators agreed that the fake images contained
symptoms of the disease, while in overall 80% cases, the
majority of the evaluators agreed that the fake images
contained symptoms of the disease.

Finally, we analyze if there is any statistical difference
between judgements of real and fake disease images.
Second column of Table 8 also shows the percentage of
real images that were judged to contain disease symptoms
by zero or more evaluators. To understand whether this
represented statistically significant differences, we com-
pared the ratio of the number of disease vs non-disease
judged images (according to the majority) using Pearson’s
Chi-squared test (a parametric test) and Fisher’s Exact Test
(a non-parametric test). When comparing the differences
using Pearson’s Chi-squared test we obtain χ2 = 0.669
(p = 0.4132). Similarly, when using Fisher’s Exact Test,
we obtain an odds ratio of 1.822 (p = 0.4139). Since in
both cases p >> 0.05 we do not consider the differences
to be statistically significant.

To summarize, medical professionals are convinced
that Jekyll images contain the targeted disease (Car-
diomegaly), and their judgements of real and fake disease
images shows no statistical difference.

5.2.2. User Study Part 2: Detecting Fake Images. In
this task, evaluators are asked to mark a given image as
‘fake’ or ‘real’. We described that ‘real’ images are those
produced by an X-ray imaging device, and ‘fake’ are those
generated by a computer algorithm. Evaluators were free
to use any basis for their judgement. Again, we do not
enforce any time limit to analyze the image. Figure 20 in
Appendix B shows a screenshot of our survey page.

All three evaluators are given 50 real images with
disease, and 50 fake images (with disease) generated using
Jekyll. Third column of Table 7 shows the individual ac-
curacy of evaluators, as well as the average, and majority

6. For these 5 uncertain cases, evaluators gave us feedback that some
images were rotated, or had poor visibility in the heart region, making
it harder to arrive at a decision.

TABLE 7. ACCURACY OF EVALUATORS WHEN (1) IDENTIFYING

REAL X-RAYS WITH SYMPTOMS OF CARDIOMEGALY (FLEISS’
κ = 0.62 (p < 10−6)), AND (2) DISTINGUISHING BETWEEN REAL

AND FAKE X-RAYS.

Evaluator
Accuracy

Study Part 1 Study Part 2
(Real X-rays only)

Evaluator 1 91.9% 48.0%

Evaluator 2 86.6% 48.0%

Evaluator 3 91.8% 55.0%

Average 86.8% 50.3%

Majority 90.9% 47.0%

TABLE 8. PERCENTAGE OF REAL X-RAY IMAGES AND FAKE X-RAY

IMAGES JUDGED BY EVALUATORS TO CONTAIN SYMPTOMS OF

CARDIOMEGALY.

# Evaluators voting ‘Disease’ Real Images Fake Images
At least 1 evaluator 98% 98%

At least 2 evaluators 88% 80%

All 3 evaluators 60% 60%

0 evaluators 2% 2%

accuracy. Overall, the accuracy when considering majority
decision is low at 47%. The inter annotator agreement for
the fake detection task is κ = 0.024 (p = 0.674), when
measured using Fleiss’s κ metric, indicating a lack of
agreement among annotators. Therefore, we conclude that
evaluators are unable to accurately distinguish between
real and fake images.

6. Defending Against Attacks by Jekyll
We investigate two methods to detect images generated by
Jekyll: (1) blind detection, and (2) supervised detection
Blind Detection. In this scheme, the defender has no
access to fake images and no knowledge of the attacker’s
generative model. However, a corpus of real images is
available to the defender. These assumptions are realistic,
but the problem setting is quite challenging. A viable de-
fense approach in this scenario is to use anomaly detection
to identify fake images.

There is limited existing work on blind detection of
GAN generated images. We use a method proposed by Li
et al. [83] that leverages disparities in color components
between real and fake images (GAN generated images).
The idea is that GAN training objectives typically place
no explicit constrains to learn specific correlations among
color components in the RGB space. This can result in
inconsistencies when fake images are examined in other
color spaces, namely HSV and YCbCr. This technique
extracts color statistics of HSV and YCbCr color spaces
of real images, and then uses these features to train a
One-Class Support Vector Machine (SVM) for anomaly
detection. The expectation is that the one-class SVM will
flag fake images as anomalies in the (color) feature space.
We refer to this method as CSD-SVM.

Since this method requires color images, we only
use the Proliferative DR dataset. X-ray images are in
grayscale. We use an implementation of CSD-SVM pro-
vided by the authors.7 Training dataset of CSD-SVM in-
cludes 232 real images with Proliferative DR. The testing
dataset contains 700 real, and 703 fake images (both with

7. https://github.com/lihaod/GAN image detection

150



TABLE 9. PERFORMANCE OF THE SUPERVISED MESONET CLASSIFIER AND BLIND CSD SVM WHEN DETECTING FAKE IMAGES GENERATED BY

Jekyll. PRECISION AND RECALL ARE PRESENTED FOR THE FAKE IMAGES GENERATED BY Jekyll.

Datasets
Supervised: MesoNet Blind: CSD-SVM

Jekyll Images Repurposed Jekyll Images Jekyll Images
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Cardiomegaly 99.4% 100% 99% 56.8% 100% 6% N/A N/A N/A

Proliferative DR 98.1% 97% 99% 83.4% 96% 70% 60.1% 29% 77%

Proliferative DR). The SVM uses a radial basis kernel,
where kernel coefficient (γ) is set to 0.1, and the upper
bound for the training error (ν) is set to 0.12. The hyper-
parameters are estimated using 5-fold cross validation.

Table 9 shows detection accuracy, precision, and recall
(for fake class). CSD-SVM is only able to achieve 60%
accuracy, at a precision and recall of 29%, and 77%,
respectively. The low performance suggests that images
generated by Jekyll are hard to detect using a blind scheme
that analyzes color space disparity.

Supervised Detection. Here we assume the defender
has access to a corpus of both real and fake images. While
this is a stronger defense assumption, it is important to
investigate how well supervised schemes can detect fake
images. Such schemes can be used along with a blind de-
tection scheme to further improve detection performance.
The basic idea is to build a supervised machine learning
classifier to detect fake images.

We use a high performing supervised classifier called
MesoNet [84], proposed recently by Afchar et al. The
intuition behind MesoNet is to examine image features at
a mesoscopic level, as micro (image noise) and macro-
scopic (semantic aspects) features may fail to distinguish
between real and fake imagery. We use an implementation
of MesoNet provided by the authors.8. The MesoNet
model includes 4 inception blocks, where each block con-
catenates several convolutional layers of varying shapes
together. Training and testing sets were constructed on
disjoint sets of patients.

We apply MesoNet to the Cardiomegaly and Prolifer-
ative DR datasets. For the Cardiomegaly dataset, we train
MesoNet on 4, 920 real (obtained via upsampling), and
4, 359 fake images, and test on a set of 443 real and 375
fake images. For the Proliferative DR dataset, we train
MesoNet on 400 real and 403 fake images, and test on a
balanced set of 300 real and 300 fake images.

Table 9 shows the detection performance of MesoNet.
MesoNet performs well in detecting images generated by
Jekyll with an accuracy of 99.4% on the Cardiomegaly
dataset, and 98.1% accuracy on the Proliferative DR
dataset. This is promising. However, note that the attacker
can try to adapt the Jekyll model to bypass detection. Next,
we present a countermeasure against this defense.

Countermeasures Against Supervised Detection. Our
idea is to modify the attacker’s GAN model to evade
detection. If the attacker has white-box access to the
defender model, one evasion strategy is to attach the
defender’s model to Jekyll as an additional discriminator.
This will train the generator to produce fake images that
can fool the defender’s model. Instead, we assume a more

8. https://github.com/DariusAf/MesoNet

realistic setting that does not require access to the defender
model.

We tested different modifications to Jekyll, including
retraining with different random seeds, retraining with
different weights for the loss terms, changing the generator
architecture by varying configuration of the deconvolution
filters, and finally modifying the discriminator framework.
Among all these modifications, we observe that changes to
the discriminator framework results in successful evasion,
which we describe in more detail below.

In a GAN, the generator primarily relies on the dis-
criminator’s feedback to generate fake images. Jekyll uses
a PatchGAN discriminator that determines whether in-
dividual small patches of an image look real or fake.
We modify Jekyll to include an additional discriminator
that analyzes the image as a whole (instead of individual
patches) to classify as fake or real. This additional discrim-
inator is implemented using a single layer feed-forward
network that takes the output of PatchGAN and produces
a scalar score. The modified adversarial GAN objective is
then updated to include both the direct PatchGAN output,
as well as the output of the feed-forward network. Such
an additional discriminator serves to approximate the role
of a defender model, which Jekyll’s generator can learn
to fool while training. We refer to this modified version
of Jekyll as Repurposed Jekyll.

We then apply MesoNet trained on Jekyll images to
images generated by Repurposed Jekyll. Table 9 shows
the detection performance. There is a significant drop in
detection accuracy from 99.4% to 55.6% for the Car-
diomegaly dataset, and from 98.1% to 83.4% for the
Proliferative DR dataset. These results highlight the sus-
ceptibility of supervised classifiers to advanced attacks.

7. Conclusion

In this work, we investigate deep learning powered attacks
against medical image diagnostics. We present Jekyll, a
GAN-based framework that can translate a biomedical
image of a patient to a new one that indicates an attacker
chosen disease condition, while preserving the identity of
the patient. Such translation attacks can lead to misdiag-
nosis by both medical professionals and machine learning
algorithms. Additionally, Jekyll provides methods to en-
able repeated attacks against a victim by controlling the
severity of the injected disease. We extensively evaluate
attack success of Jekyll using both machine learning tools
and a user study involving medical professionals. Lastly,
we investigate defensive measures that aim to detect Jekyll
generated images. We find that supervised detection ap-
proaches are promising but vulnerable to evasion tactics
by advanced attackers. We hope our work encourages the
community to pursue robust defensive measures.
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Appendix A.
Supplementary Images and Figures

Figure 12. Disease Injection Samples for Cardiomegaly, Effusion and
Proliferative DR

Figure 13. Failed Cardiomegaly Samples.

Figure 14. Failed Effusion Samples.

Figure 15. Real and Fake Samples for Cardiomegaly, Effusion and
Proliferative DR

Figure 16. Examples of progressive injection for DR.

Figure 17. Examples of failure cases for Proliferative DR.
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Figure 18. Monotonic increase in probability of Cardiomegaly as as-
signed by evaluation classifier Cd

e when increasing degree of disease
injection.

Appendix B.
User Study

Figure 19. Screenshot of User Study Interface for Part 1.

TABLE 10. FALSE POSITIVE RATE OF EVALUATORS WHEN (1)
IDENTIFYING REAL X-RAYS WITH SYMPTOMS OF CARDIOMEGALY

(FLEISS’ κ = 0.62 (p < 10−6)), AND (2) DISTINGUISHING BETWEEN

REAL AND FAKE X-RAYS.

Evaluator
False Positive Rate

Study Part 1 Study Part 2
(Real X-rays only)

Evaluator 1 2.0% 9.0%

Evaluator 2 6.0% 7.0%

Evaluator 3 4.0% 8.0%

Average 4.0% 8.0%

Majority 3.0% 5.0%

TABLE 11. FALSE NEGATIVE RATE OF EVALUATORS WHEN (1)
IDENTIFYING REAL X-RAYS WITH SYMPTOMS OF CARDIOMEGALY

(FLEISS’ κ = 0.62 (p < 10−6)), AND (2) DISTINGUISHING BETWEEN

REAL AND FAKE X-RAYS.

Evaluator
False Negative Rate

Study Part 1 Study Part 2
(Real X-rays only)

Evaluator 1 6.0% 43.0%

Evaluator 2 7.0% 45.0%

Evaluator 3 14.2% 37.0%

Average 9.1% 41.7%

Majority 6.0% 48.0%

Figure 20. Screenshot of User Study Interface for Part 2.

Appendix C.
Models and Datasets

C.1. Jekyll

Dataset preparation for Jekyll.
NIH Chest X-ray dataset. In order to effectively partition
the dataset for both the attack and evaluation partitions,
we decided upon a division that would allow construction
of a reliable identity and disease classifier for the
evaluation partition. To achieve this goal, we construct
partitions on a patient level, rather than an image level.
More specifically, we first pick 2,000 patients such that
each of these patients holds 10 or more images. This
ensures that we can build a reliable evaluation identity
classifier. However, we also require an abundance of
images for each disease, in order to build effective
evaluation disease classifiers. We thus add another 4,805
patients to the evaluation partition, to allow for a large
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TABLE 12. GENERATOR AND DISCRIMINATOR ARCHITECTURES.

Generator Architecture
Layer Type # of channels Filter Size Stride Normalization Activation Output Shape
padding 3 - - - - (262,262,3)
conv2d 64 7× 7 1 instance norm relu (256,256,64)
conv2d 128 3× 3 2 instance norm relu (128,128,128)
conv2d 256 3× 3 2 instance norm relu (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
residual block 256 - - - - (64,64,256)
deconv2d 128 3× 3 2 instance norm relu (128,128,128)
deconv2d 64 3× 3 2 instance norm relu (256,256,64)
padding 3 - - - - (262,262,3)
conv2d 3 7× 7 1 instance norm tanh (256,256,3) )

Discriminator Architecture
conv2d 64 4× 4 2 instance norm relu (128,128,64)
conv2d 128 4× 4 2 instance norm relu (64,64,128)
conv2d 256 4× 4 2 instance norm relu (32,32,256)
conv2d 512 4× 4 1 instance norm relu (32,32,512)
conv2d 1 4× 4 1 - - (32,32,1) )

TABLE 13. TRAINING CONFIGURATIONS OF Jekyll FOR DIFFERENT DISEASES.

Dataset λadv λdisease λidentity λcycle Epochs Batch
size Optimizer

Cardiomegaly 20 50 25 200 100 1 Adam
Severe DR 5 5 20 200 150 1 Adam
Proliferative DR 5 10 20 200 160 1 Adam

TABLE 14. DATASET STATISTICS (NUMBER OF IMAGES) AND TRAINING CONFIGURATIONS FOR ATTACK (Cd
a ) AND EVALUATION (Cd

e ) DISEASE

CLASSIFIERS.

Dataset Cd
a Cd

e Epochs Batch Size Optimizer
Train Validation Test Train Validation Test

Cardiomegaly 1,600 100 999 1,600 100 1,177 50 5 Adam

Effusion 7,000 1,454 1,500 11,676 2,502 2,502 50 5 Adam

Severe DR 1,419 100 609 1,462 100 627 20 32 Adam

Proliferative DR 1,374 100 590 1,339 100 575 20 32 Adam

TABLE 15. DATASET STATISTICS (NUMBER OF IMAGES) AND TRAINING CONFIGURATIONS FOR ATTACK (Ci
a) AND EVALUATION (Ci

e) IDENTITY

CLASSIFIERS. TRAINING CONFIGURATION FOR BOTH Ci
a AND Ci

e IDENTITY CLASSIFIERS ARE THE SAME FOR ANY GIVEN DATASET.

Dataset Ci
a Ci

e Epochs Batch Size Optimizer
Train Validation Test Train Validation Test

X-Ray 6,249 1,598 1,945 13,162 3,369 4,108 1000 16 Adam

Retinal Fundus 3,928 1,000 3,072 4,157 1,000 3,249 80 3 Adam

amount of images for each disease. This brings the
evaluation partition to a total of 6,805 patients. All
remaining 24,000 patients in the NIH Chest X-ray dataset
are used to train Jekyll.

Retinal Fundus images. The retinal fundus image dataset
only provides 2 images per patient; one image for the
left eye, and one image for the right eye. This limitation
simplifies that division of patients for the attack and
evaluation partitions. More specifically, we divide the
patients equally between the attack and evaluation
partitions, with each receiving 44,351 patients.

Implementation details for alternative architectures.
StarGAN. To fit StarGAN into the Jekyll framework,
as discussed in section 5.1.5, we must use a disease
classification loss, and a perceptual identity loss. The
disease classification loss objective is determined using
predictions from the auxiliary domain classifier. This
domain classifier shares weights with the adversarial
discriminator. This objective is optimized via a modified
version of the binary-cross entropy loss function, called
the focal loss [77]. Focal loss modifies cross-entropy
to downweight the loss coming from easily classified
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samples, and upweight that coming from difficult samples.
We use hyperparameter values of α = 1 and γ = 2. Here,
alpha is simply a balancing weight, and γ is the focusing
parameter, which determines the rate at which easily
classified samples are downweighted in the loss [77]. The
perceptual identity loss objective is determined using an
external attack identity classifier. The architecture of this
external identity classifier (built separately in PyTorch
for StarGAN) is identical to that of the default Jekyll
attack identity classifier. More specifically, the identity
loss is computed using output extracted from the third
pooling layer (precedes the fourth dense block in the
DenseNet-121 architecture). The model is trained for
200,000 iterations with a batch size of 1 and the Adam
optimizer. Learning rate is set to 10−4. We weight the
loss objectives with weights λadversarial = 20, λdisease =
5, λidentity = 0.1, λgradient penalty = 10, λcycle = 200.

IPCGAN. To fit IPCGAN into the Jekyll framework, we
must again introduce a disease classification loss, and a
perceptual identity loss. IPCGAN already optimizes an
age-loss, and we substitute the AlexNet age-classifier for
an external disease classifier. Similarly, IPCGAN already
optimizes a perceptual identity loss, and we substitute the
identity classifier for an external identity classifier. Again,
the identity loss is computed using output extracted from
the third pooling layer (precedes the fourth dense block
in the DenseNet-121 architecture). Finally, the generator
input layer is changed to accept 256x256x3 input, instead
of 128x128x3, as used in the original IPCGAN implemen-
tation. The model is trained for 200,000 iterations, with a
batch size of 8 and the Adam optimizer. Learning rate is
set to 10−4. We weight the loss objectives with weights
λadversarial = 1, λdisease = 1, λidentity = 0.0005.
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